t_test_mverse performs t-tests across the multiverse. If x or y is specified, then performs one and two sample t-tests on specified columns of the data. If both x and y are NULL, then performs t.test based on the formula branches.

t_test_mverse(
  .mverse,
  x = NULL,
  y = NULL,
  alternative = "two.sided",
  mu = 0,
  paired = FALSE,
  var.equal = FALSE,
  conf.level = 0.95
)

Arguments

.mverse

a mverse object.

x

(optional) column name of data within mverse object

y

(optional) column name of data within mverse object

alternative

a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". You can specify just the initial letter.

mu

a number indicating the true value of the mean (or difference in means if you are performing a two sample test).

paired

a logical indicating whether you want a paired t-test.

var.equal

a logical variable indicating whether to treat the two variances as being equal.

conf.level

confidence level of the interval.

Value

a multiverse table displaying the t-test results as a tibble.

Examples

# Performing a unpaired two sample t-test.
library(dplyr)
#> 
#> Attaching package: ‘dplyr’
#> The following objects are masked from ‘package:stats’:
#> 
#>     filter, lag
#> The following objects are masked from ‘package:base’:
#> 
#>     intersect, setdiff, setequal, union
mv <- soccer %>%
  filter(!is.na(rater1), !is.na(rater2)) %>%
  mverse()
x <- mutate_branch(
  ((rater1 + rater2) / 2) > mean((rater1 + rater2) / 2),
  ifelse(rater1 > rater2, rater1 > 0.5, rater2 > 0.5)
)
y <- mutate_branch(
  redCards, yellowCards, yellowReds
)
two_sample_form <- formula_branch(y ~ x)
mv <- mv %>%
  add_mutate_branch(x, y) %>%
  add_formula_branch(two_sample_form)
t_test_mverse(mv)
#> # A tibble: 6 × 13
#>   universe x_branch y_branch two_sample_form_branch statistic  p.value
#>   <fct>    <fct>    <fct>    <fct>                      <dbl>    <dbl>
#> 1 1        x_1      y_1      two_sample_form_1         -1.90  5.68e- 2
#> 2 2        x_1      y_2      two_sample_form_1          5.65  1.58e- 8
#> 3 3        x_1      y_3      two_sample_form_1         -0.446 6.55e- 1
#> 4 4        x_2      y_1      two_sample_form_1         -0.876 3.81e- 1
#> 5 5        x_2      y_2      two_sample_form_1          7.95  1.98e-15
#> 6 6        x_2      y_3      two_sample_form_1          0.218 8.28e- 1
#> # ℹ 7 more variables: conf.lower <dbl>, conf.upper <dbl>,
#> #   `mean in group FALSE` <dbl>, `mean in group TRUE` <dbl>,
#> #   x_branch_code <fct>, y_branch_code <fct>, two_sample_form_branch_code <fct>